sented in the figures are reported. These plots suggest that: (1) In AnWS, as a straightforward consequence of the $\mathrm{Al} / \mathrm{Si}$ ratio $=1$ and of the perfect alternation $\mathrm{Al}-\mathrm{Si}$, the charge-balance trend cannot be influenced by the Al occupancy. The charge balance is merely achieved through the tetrahedral distortion. (2) In AnQ, as already pointed out (Chiari, Facchinelli \& Bruno, 1978), the Al occupancy plays a significant role in balancing the different $\sum s(\mathrm{Ca}-\mathrm{O})$. The representation adopted here allows an evaluation to be made of the significant contribution of the tetrahedral distortion to the charge balance. (3) In BytL again, the two factors cooperate in a way similar to that in BytQ and AnQ.

We thank A. Dal Negro for collecting the X-ray data at Centro di Studio per la Cristallografia Strutturale del CNR, R. Rinaldi and M. G. Vezzalini for the electronmicroprobe analysis, L. Pagani for the typing and L. Turco for the drawings. The Consiglio Nazionale delle Ricerche, Roma, Italy, is acknowledged for financing the installation and the maintenance (for the use of all scientists affiliated with Committee 05 of the CNR) of an electron-microprobe laboratory at the Istituto di Mineralogia e Petrologia dell'Università di Modena, whose facilities were used in the present work. This work was supported by CNR Grant 77.00925.

References

Albee, A. L. \& Ray, L. (1970). Anal. Chem. 42, 14081414.

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.

Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 19571959.

Bruno, E., Chiari, G. \& Facchinelli, A. (1976). Acta Cryst. B32, 3270-3280.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Chiari, G., Facchinelli, A. \& Bruno, E. (1978). Acta Cryst. B34, 1757-1764.
Czank, M. (1973). Strukturen des Anorthits bei höheren Temperaturen. Thesis, ETH, Zürich.
Facchinelli, A. \& Bruno, E. (1977). Rend. Soc. Ital. Mineral. Petrol. 33, 152-154.
Fleet, S. G., Chandrasekhar, S. \& Megaw, H. D. (1966). Acta Cryst. 21, 782-801.

Foit, F. F. \& Peacor, D. R. (1973). Am. Mineral. 58, 665675.

International Tables for X-ray Crystallography' (1968). Vol. III. 2nd ed. Birmingham: Kynoch Press.

Jagodzinski, H. \& Kalus, C. K. (1977). Institut LaueLangevin, Annex to the Annual Report 1976, p. 130. Grenoble: Dessins.
MacKenzie, W. S. \& Smith, J. V. (1959). Acta Cryst. 12, 73-74.
Megaw, H. D., Kempster, C. J. E. \& Radoslovich, E. W. (1962). Acta Cryst. 15, 1017-1035.

Ribbe, P. H. (1975). Feldspars Mineralogy, edited by P. H. Ribbe, pp. R1-R51. Blacksburg: Southern Printing Co.
Ribbe, P. H. \& Gibbs, G. V. (1969). Am. Mineral. 54, 8594.

Wainwright, J. E. \& Starkey, J. (1971). Z. Kristallogr. 133, 75-84.
Winter, J. K., Ghose, S. \& Okamura, F. P. (1977). Am. Mineral. 62, 921-931.
Ziebold, T. O. \& Ogilvie, R. E. (1964). Anal. Chem. 36, 322-327.

The Crystal Structures of Manganese(II) Phosphinate Monohydrate, Zinc Phosphinate Monohydrate, and Anhydrous Zinc Phosphinate

By Timothy J. R. Weakley
Chemistry Department, Dundee University, Dundee DD1 4HN, Scotland

(Received 18 August 1978; accepted 15 September 1978)

Abstract

The structures of $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[P 2_{1} / n, a=\right.$ 12.013 (16), $b=8.100$ (7), $c=13.450$ (17) $\AA, \beta=$ $106.28(3)^{\circ}, Z=8 ; R=0.080$ for 1553 reflections], $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[P 2_{1} / c, a=7.692\right.$ (6), $b=$ 7.391 (9), $c=10.490$ (11) $\AA, \beta=104.15$ (4) ${ }^{\circ}, Z=4$; $R=0.051$ for 960 reflectionsl, and $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$

[Pmma, $a=6.482$ (7), $b=5.363$ (4), $c=7.436$ (9) \AA, $Z \doteq 2 ; R=0.083$ for 302 reflections] have been determined from photographic data. In the monohydrates, which have extended three-dimensional structures, the water molecule is coordinated as well as all anion O atoms, and the MO_{6} octahedra are edge-linked in pairs. In $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ a layer structure is present, containing chains of edge-linked ZnO_{6} octahedra.

Introduction

The structures of crystalline phosphinic acid, $\mathrm{H}_{2} \mathrm{PO}(\mathrm{OH})$ (Williams, 1966), and $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ (Loopstra, 1958) have been determined by neutron diffraction, and those of a number of phosphinates by X-ray diffraction: $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Galigné \& Dumas, 1973), $\mathrm{CaNa}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{3}$ (Matsuzaki \& Iitaka, 1969), $\mathrm{Mn}(\mathrm{bpy})\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ (Weakley, 1978), and $\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{3} . \mathrm{H}_{2} \mathrm{O}(\mathrm{Ln}=\mathrm{La}, \mathrm{Eu})$ (Ionov, Aslanov, Rybakov \& Porai-Koshits, 1973a,b). In the lanthanide salts, the coordination number of eight for Ln^{3+} is achieved by coordination of the water as well as by participation of the anion in both $\mathrm{Ln}-\mathrm{O}-\mathrm{Ln}$ and $\mathrm{Ln}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{Ln}$ bridges. The present work was carried out to determine whether similar structural features are present in $M^{\text {II }}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(M^{\text {II }}=\mathrm{Mn}\right.$, Zn) in which the coordination number of the cation is expected to be six or less, and whether the dehydration of $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ is accompanied by a decrease in coordination number. The compounds will be designated MPM $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$, $\mathrm{ZPM}\left[\mathrm{Zn}\left(\mathrm{H}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$, and $\mathrm{ZP}\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}\right]$.

Experimental

ZPM and ZP were prepared as described by Brun, Dumail \& Maurin (1971). The form of MPM usually obtained by a similar procedure was evidently isostructural with ZPM, which it resembled in space group and cell parameters $\left[P 2_{1} / c, a=7.87(1), b=7.42(1), c=\right.$ 10.77 (1) $\AA, \beta=103.0(1)^{\circ}, Z=4$] and in the distribution of intensities in corresponding zero- and upperlevel Weissenberg photographs. The variant here designated MPM was obtained by chance and the exact conditions for its formation could not be established.

Crystal data

MPM, $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / n, a=$ 12.013 (16), $b=8.100$ (7), $c=13.450$ (17) $\AA, \beta=$ $106 \cdot 28(3)^{\circ}, Z=8, D_{m}=2 \cdot 13, D_{x}=2.146 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=792, \mu(\mathrm{Cu} K \alpha)=21 \cdot 2 \mathrm{~mm}^{-1}$.

ZPM, $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / c, a=$ 7.692 (6), $b=7.391$ (9), $c=10.490(11) \AA, \beta=$ 104.15 (4) ${ }^{\circ}, Z=4, D_{m}=2.46, D_{x}=2.45 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=424, \mu(\mathrm{Cu} K \alpha)=10.7 \mathrm{~mm}^{-1}$.
$\mathrm{ZP}, \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$, orthorhombic, Pmma, $a=$ 6.482 (7), $b=5.363$ (4), $c=7.436$ (9) $\AA, Z=2, D_{x}=$ $2.52 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=192, \mu\left(\mathrm{Cu} K(x)=11.7 \mathrm{~mm}^{-1}\right.$.

Equi-inclination Weissenberg photographs (Cu radiation, $\lambda=1.5418 \AA$) of levels $h 0-7 l$ and $h k 0-2$ for MPM, $0-5 k l$ and $h 0-5 l$ for ZPM, and $h 0-3 l$ and $h k 0-$ 6 for ZP were scanned by the SRC Microdensitometer Service, Rutherford Laboratory. Each data set was corrected for absorption; however, for ZPM this made
no significant difference to the final residual or to the atomic coordinates and e.s.d.'s, and all results quoted for ZPM derive from the data without absorption correction.

Structure determination and refinement

The structures were determined by the heavy-atom method, and refined by full-matrix least squares (anisotropic thermal parameters for all non-hydrogen atoms) with SHELX-76 (Sheldrick, 1976). In MPM and ZPM the stronger peaks in weighted difference maps towards the end of refinement included ones near the expected positions of the anion H atoms ($\mathrm{P}-\mathrm{H}$ distances $1 \cdot 23$ to $1.53 \AA$ for MPM and 1.18 to $1.68 \AA$ for ZPM). The H atoms were included at calculated positions ($d_{\mathrm{p}-\mathrm{H}} 1.40$ $\AA, U_{\mathrm{H}} 0.05 \AA^{2}$) in the last cycles for all three compounds. Refinement with unit weights converged at $R=$ 0.080 for MPM (1553 data, 147 parameters), $R=$ 0.051 for ZPM (960 data, 73 parameters), and $R=$

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ for MPM, $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$

	x	y	z
$\mathrm{Mn}(1)$	$4778(2)$	$1083(3)$	$8262(2)$
$\mathrm{Mn}(2)$	$3950(2)$	$2461(3)$	$5736(2)$
$\mathrm{P}(1)$	$2814(3)$	$4279(5)$	$7440(3)$
$\mathrm{P}(2)$	$4182(3)$	$2366(5)$	$496(3)$
$\mathrm{P}(3)$	$5115(3)$	$1384(5)$	$3830(3)$
$\mathrm{P}(4)$	$1532(3)$	$1659(6)$	$2247(4)$
$\mathrm{O}(1)$	$1618(7)$	$4424(12)$	$6765(8)$
$\mathrm{O}(2)$	$3547(7)$	$2926(11)$	$7222(7)$
$\mathrm{O}(3)$	$4735(8)$	$2349(13)$	$-362(8)$
$\mathrm{O}(4)$	$3979(7)$	$762(12)$	$984(7)$
$\mathrm{O}(5)$	$4172(7)$	$1512(12)$	$4318(8)$
$\mathrm{O}(6)$	$5286(7)$	$-256(11)$	$3362(7)$
$\mathrm{O}(7)$	$637(7)$	$1355(13)$	$1241(7)$
$\mathrm{O}(8)$	$1167(7)$	$2301(14)$	$3137(8)$
$\mathrm{Aq}(1)$	$2156(7)$	$1602(12)$	$5178(8)$
$\mathrm{Aq}(2)$	$3295(7)$	$4876(11)$	$5097(8)$

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ for ZPM , $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{ZP}, \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$

(i) ZPM	x	y	z
Zn	$1925(1)$	$413(2)$	$1040(1)$
$\mathrm{P}(1)$	$400(3)$	$1835(3)$	$3491(2)$
$\mathrm{P}(2)$	$4686(3)$	$3773(3)$	$1936(2)$
$\mathrm{O}(1)$	$268(7)$	$3531(8)$	$4276(5)$
$\mathrm{O}(2)$	$624(8)$	$2088(9)$	$2119(6)$
$\mathrm{O}(3)$	$4053(8)$	$2130(9)$	$1081(6)$
$\mathrm{O}(4)$	$6683(8)$	$3998(10)$	$2345(6)$
Aq	$2871(9)$	$-1451(11)$	$-182(7)$
(ii) ZP	x	y	z
Zn	0	0	0
$\mathrm{P}(1)$	2500	5000	$1444(6)$
$\mathrm{P}(2)$	2500	0	$6321(6)$
$\mathrm{O}(1)$	2500	$2622(16)$	$375(10)$
$\mathrm{O}(2)$	$513(11)$	0	$7333(11)$

0.083 for ZP (302 data, 27 parameters).* The final coordinates are given in Tables 1 and 2 and derived distances and angles in Tables 3 and 4.

[^0]Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for MPM, $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Mn}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	$2 \cdot 142$ (10)	$\mathrm{Mn}(2)-\mathrm{Aq}(1)$	2-188 (9)
$\mathrm{Mn}(1)-\mathrm{O}(2)$	2.283 (8)	$\mathrm{Mn}(2)-\mathrm{Aq}(2)$	2.192 (9)
$\mathrm{Mn}(1)-\mathrm{O}\left(3^{\text {ii) }}\right.$)	$2 \cdot 129$ (11)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.473 (9)
$\mathrm{Mn}(1)-\mathrm{O}\left(4^{\text {iii) }}\right.$)	$2 \cdot 155$ (10)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.486 (8)
$\mathrm{Mn}(1)-\mathrm{O}\left(6^{\text {iii) }}\right.$)	2.266 (10)	$\mathrm{P}(2)-\mathrm{O}(3)$	1.485 (10)
$\mathrm{Mn}(1)-\mathrm{O}\left(8^{\text {iv }}\right.$)	$2 \cdot 164$ (10)	$\mathrm{P}(2)-\mathrm{O}(4)$	1.506 (10)
$\mathrm{Mn}(2)-\mathrm{O}(2)$	$2 \cdot 217$ (9)	$\mathrm{P}(3)-\mathrm{O}(5)$	1.463 (10)
$\mathrm{Mn}(2)-\mathrm{O}(5)$	$2 \cdot 141$ (10)	$\mathrm{P}(3)-\mathrm{O}(6)$	1.508 (9)
$\mathrm{Mn}(2)-\mathrm{O}\left(6^{\text {i }}\right.$)	$2 \cdot 209$ (10)	$\mathrm{P}(4)-\mathrm{O}(7)$	1.495 (10)
$\mathrm{Mn}(2)-\mathrm{O}\left(7^{\text {iii) }}\right.$)	$2 \cdot 172$ (10)	$\mathrm{P}(4)-\mathrm{O}(8)$	1.479 (10)
$\mathrm{Aq}(1) \cdots \mathrm{O}\left(3^{\text {i }}\right.$)	2.92 (2)	$\mathrm{Aq}(2) \cdots \mathrm{O}\left(4^{\text {vi }}\right.$)	$2 \cdot 80$ (2)
$\mathrm{Aq}(1) \cdots \mathrm{O}(8)$	2.73 (2)	$\mathrm{Aq}(2) \cdots \mathrm{O}\left(7^{\text {iiii }}\right.$)	2.76 (2)
$\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$	3.448 (5)		
$\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(3)$	92.8 (4)	$\mathrm{O}\left(6^{\text {iii) }}\right)-\mathrm{Mn}(2)-\mathrm{O}\left(7^{\text {i }}\right.$) 88.7 (4)
$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\text {iii) }}\right.$)) 89.0 (4)	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(5)$	167.8 (4)
$\mathrm{O}\left(4^{\text {iii }}\right)-\mathrm{Mn}(1)-\mathrm{O}\left(8^{\text {iv }}\right)$) 90.4 (4)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.8 (6)
$\mathrm{O}\left(3^{\text {i }}\right)-\mathrm{Mn}(1)-\mathrm{O}\left(6^{\text {iii) }}\right.$	167.8 (4)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(4)$	119.5 (6)
$\mathrm{Aq}(1)-\mathrm{Mn}(2)-\mathrm{O}(2)$	$85 \cdot 4$ (3)	$\mathrm{O}(5)-\mathrm{P}(3)-\mathrm{O}(6)$	117.5 (6)
$\mathrm{Aq}(2)-\mathrm{Mn}-\mathrm{O}(5)$	95.3 (4)	$\mathrm{O}(7)-\mathrm{P}(4)-\mathrm{O}(8)$	$119 \cdot 3$ (5)

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, 1 \frac{1}{2}-z$; (ii) $x, y, 1+z$; (iii) $1-x,-y, 1-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 4. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for ZPM, $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{ZP}, \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$
(i) ZPM

$\mathrm{Zn}-\mathrm{O}\left(\mathrm{I}^{1}\right)$	$2 \cdot 121$ (6)	Zn - Aq	$2 \cdot 124$ (6)
$\mathrm{Zn}-\mathrm{O}$ (1ii)	2.145 (6)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.512 (6)
$\mathrm{Zn}-\mathrm{O}$ (2)	2.087 (6)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.503 (6)
$\mathrm{Zn}-\mathrm{O}(3)$	2.060 (6)	$\mathrm{P}(2)-\mathrm{O}(3)$	I. 514 (7)
$\mathrm{Zn}-\mathrm{O}\left(4^{\text {ii) }}\right.$	2.053 (6)	$\mathrm{P}(2)-\mathrm{O}(4)$	1.499 (6)
Aq...O(3ii)	$2 \cdot 80$ (1)	$\mathrm{Zn} \cdots \mathrm{Zn}^{\text {iv }}$	$3 \cdot 277$ (2)
$A q \cdots O\left(2^{\text {lii }}\right)$	2.98 (1)		
$\mathrm{O}(3)-\mathrm{Zn}-\mathrm{O}(2)$	96.3 (3)	$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{Aq}$	171.6 (3)
$\mathrm{O}\left(1^{\text {i }}\right.$)-Zn-Aq	86.4 (3)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.3 (4)
$\mathrm{O}\left(\mathrm{l}^{\text {ii) }}\right.$-Zn-O(4i)	91.7 (3)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(4)$	114.6 (4)

Symmetry code: (i) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (ii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii)

$$
1-x, 1-y, 1-z \text {; (iv) }-x,-y,-z
$$

(ii) ZP			
$\mathrm{Zn}-\mathrm{O}(1)$	$2 \cdot 164(6)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.502(8)$
$\mathrm{Zn}-\mathrm{O}(2)$	$2.011(8)$	$\mathrm{P}(2)-\mathrm{O}(2)$	$1.492(8)$
$\mathrm{Zn} \cdots \mathrm{Zn}$	3.241^{*}		
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)$	$90.2(3)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}\left(1^{\text {ii }}\right)$	$116.1(7)$
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}\left(1^{1}\right)$	$81.1(3)$	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{O}\left(2^{\text {iii }}\right)$	119.4 (7)

$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}\left(1^{\text {i }}\right) \quad 81 \cdot 1$ (3) $\quad \mathrm{O}(2)-\mathrm{P}(2)-\mathrm{O}\left(2^{\text {iii) }}\right) 119.4$
Symmetry code: (i) $x,-y, z ;$ (ii) $x, 1-y, z$; (iii) $\frac{1}{2}-x, y, z$.

* Atoms at $0,0,0$ and $\frac{1}{2}, 0,0$.

Discussion

The structures are shown in Figs. 1, 2 and 3. The $\mathrm{P}-\mathrm{O}$ lengths range from 1.463 to $1.514 \AA$, and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles from 114.6 to 119.5°. Values spanning similar ranges have been reported for $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$in other determinations of similar accuracy (Williams, 1966; Matsuzaki \& Iitaka, 1969; Galigné \& Dumas, 1973; Weakley, 1978). The ability of the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle to vary favours the bridging role of $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$. There is no apparent correlation between the mean $\mathrm{P}-\mathrm{O}$ distance and either the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle or the number of coordinate bonds formed by the O atoms. However, the cation-oxygen distance is, as expected, longer if the anion O atom links two cations.

The structures of MPM and ZPM (Figs. 1 and 2) show resemblances to those of $\operatorname{Ln}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{3} . \mathrm{H}_{2} \mathrm{O}$ (Ionov et al., 1973a,b) in that all phosphinate O atoms, and the water molecules, are bonded to a cation, and

Fig. 1. $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$: projection down b.

Fig. 2. $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$: projection down a^{*}.
some O atoms are bonded to two. They differ from $\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{3} . \mathrm{H}_{2} \mathrm{O}$ and from one another in points of detail. In particular, the Zn and Mn atoms are in nearoctahedral coordination, and the octahedra are linked by edge-sharing to give $M_{2} \mathrm{O}_{10}$ groups. The $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{O}$ lengths are within the normal ranges for octahedral coordination.

In MPM (Fig. 1) the asymmetric unit contains one $\mathrm{Mn}_{2} \mathrm{O}_{10}$ group, in which the Mn atoms are structurally distinct since one is bonded to six anion O atoms and the other to four anion O atoms and two water molecules. Atoms of types $O(2)$ and $O(6)$ are involved in the edge-sharing between octahedra. The Mn atoms within a $\mathrm{Mn}_{2} \mathrm{O}_{10}$ group are also linked via a $\mathrm{Mn}-\mathrm{O}$ -$\mathrm{P}-\mathrm{O}-\mathrm{Mn}$ bridge [involving $\mathrm{P}(4)$]. Similar bridges through $P(2)$ and $P(3)$ link the groups into chains along c. Other bridges involving $\mathrm{P}(1)$ cross-link the chains into a three-dimensional network, the cross-links forming spirals about the screw axis. Possible hydrogen bonds, involving the water molecules and $\mathrm{O}(3), \mathrm{O}(4)$, $\mathrm{O}(7)$, and $\mathrm{O}(8)$, occur both within c axis chains $(2.76$ $\AA)$ and between chains ($2.73,2 \cdot 80,2.93 \AA$).

In ZPM (Fig. 2) the $\mathrm{Zn}_{2} \mathrm{O}_{10}$ groups lie at crystallographic centres of symmetry. The $\mathrm{O}(1)$ atoms define

Fig. 3. $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$: projection down c.
the shared edges of octahedra. Each group is linked through $\mathrm{Zn}-\mathrm{O}-\mathrm{P}-\mathrm{O}-\mathrm{Zn}$ bridges to eight other groups so that a three-dimensional network results. The water molecule makes just two contacts with anion O atoms which appear compatible with hydrogenbonding, if contacts within the same coordination sphere are excluded: one ($2.93 \AA$) is with $\mathrm{O}(2)$ bonded to the other Zn atom in the same group, and the other ($2.79 \AA$) is with $\mathrm{O}(3)$ in the next group along a.

The product of dehydration, ZP, has a simple, open layer structure (Fig. 3) extending parallel to the $a b$ plane. Chains of ZnO_{6} octahedra linked by sharing opposite edges extend along a. The Zn atoms lie at sites of $2 / m$ symmetry, and the anions have $m m$ symmetry. The atoms $\mathrm{O}(1)$ of one anion are each bonded to two Zn atoms and those of the other anion, $\mathrm{O}(2)$, are each bonded to one. There are no close contacts between layers. This structure is to be contrasted with that of di(organo)phosphinates such as $\mathrm{Zn}\left(\mathrm{BuPhPO}_{2}\right)_{2}$ (Giordano, Randaccio \& Ripamonti, 1969), which form linear polymers in which the bulky substituents force tetrahedral coordination on the Zn atom.

References

Brun, G., Dumail, M. \& Maurin, M. (1971). C. R. Acad. Sci. Sér. C, 272, 933-936.
Galigné, J. L. \& Dumas, Y. (1973). Acta Cryst. B29, 1115-1119.
Giordano, F., Randaccio, L. \& Ripamonti, A. (1969). Acta Cryst. B25, 1057-1065.
Ionov, V. M., Aslanov, L. A., Porai-Koshits, M. A. \& Rybakov, V. B. (1973a). Kristallografiya, 18, 405-406.
lonov, V. M., Aslanov, L. A., Rybakov, V. B. \& PoralKoshits, M. A. (1973b). Kristallografiya, 18, 403-404.
Loopstra, B. O. (1958). JENER Rep. Publ. No. 15.
Matsuzaki, T. \& Iitaka, Y. (1969). Acta Cryst. B25, 1932-1938.
Sheldrick, G. M. (1976). SHELX-76. Program for crystal structure determination, Cambridge Univ.
Weakley, T.J. R. (1978). Acta Cryst. B34, 281-282.
Williams, J. V. (1966). PhD Thesis, Washington State Univ.

[^0]: * Lists of structure factors and anisotropic thermal parameters for all three compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33971 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

